翻訳と辞書 |
Fourier transform on finite groups : ウィキペディア英語版 | Fourier transform on finite groups
In mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. ==Definitions== The Fourier transform of a function at a representation of is : For each representation of , is a matrix, where is the degree of . Let be a complete set of inequivalent irreducible representations of . Then the matrix entries of the are mutually orthogonal functions on . Since the dimension of the transform space is equal to , it follows that . The inverse Fourier transform at an element of is given by :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fourier transform on finite groups」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|